Black-Hole TeV Plerion in the Galactic Center

Armen Atoyan

(University of Montreal)

Charles Dermer

(Naval Research Lab)

(Astrophys. J. 617, L123, 2004)

Crab nebula

Plerions: SN remnans powered by neutron stars

Very efficient Galactic accelerators of electrons; bright sources of non-thermal radiation; energy supply through relativistic wind.

Crab Nebula – prototype plerion, and (the most) prominent non-thermal source from radio to TeV gamma-rays, L_{rad} ~ 10^{38} erg/s

(Kennel & Coroniti 1984)

TeV Emission from the Galactic Center

10

Energy (TeV)

10⁻¹

Characteristics of TeV emission:

hard power-law spectrum, α ≈ 2.1-2.3

no variation of TeV flux detected; total $L_{TeV} \sim 10^{35}$ erg/s

Multiwavelength Observations of Sgr

Radio: hard spectra with $S_v \propto v^{0.3}$, cutoff above 10^{12} Hz; total $L_{radio} \sim 10^{36}$ erg/s size ~ 0.2 mas ($R_{rad} \sim 20$ R_{Sh}) at ~ 100 GHz (Krichbaum et al. 1998)

Near-IR: flares ($factor \sim 2$) on timescale $\Delta t \sim 20$ min , $R_{NIR} \leq c \Delta t \approx 30$ R_{Sh}

X-ray flares: (factor up to 2 orders; ~ 1 per day), observed Δt ~ 200 s => $R_x \le c \Delta t = 5 R_{sh}$ (!)

Luminosity: L(2-10 keV) = $2.4*10^{33}$ erg/s spectral index: α =2.-3. ($f_F \propto E^{-\alpha}$)

(Baganoff et al. 2003)

Extended (!): $r \sim 0.7'' \sim 10^{17} cm$

Radius (pixels)

J174538.0-290022
 J174540.9-290014

Chandra obs. of Sgr A*

central 1 pc

Production of TeV radiation: possibilities & problems

Compton (Inverse): electron scattering on 'target' photons convenient photon field - radio/FIR,

radiation intensity $\propto U_{rad} - \gamma^2$, - effective mechanism

however, parallel process for the same electrons

_ Synchrotron: radiation in the magnetic field

```
intensity \propto U_{B-} \gamma^2
```

typical photon energy by TeV electrons – X-ray domain $F(TeV) / F(keV) = u_{rad}/u_{B}$; observed ratio ~40

- _ TeV production close to BH *problematic*
 - (a) magnetic field B~0.1 G << B_{eq}~10 G would be dynamically unimportant for the accretion (??)
 - (b) TeV must vary with X-ray flares (!)

Alternatives: hadron origin

<u>Proton-proton interactions:</u>

$$p+p \rightarrow \pi^0 (+ X) \rightarrow 2\gamma$$

- (a) for n ~ 10^8 cm $^{-3}$ close to BH protons with L_{accel} ~ 10^{40} erg/s are needed (??)
- (b) production of e about the same as γ
 - ⇒ same problems as with Compton origin remain:

_ Photomeson interactions:

$$p + (photon) \rightarrow \pi^0 (+ p) \rightarrow 2 \gamma$$

(a) however, electrons are produced as well:

$$p + (photon) \rightarrow \pi^+ (+ n) \rightarrow e^+$$

(b) energetics needed is higher than for p+p

Accretion Physics in the ADAF/ADIOS Regime

Advection-dominated accretion flow (ADAF) model for compact objects accreting at low Eddington accretion rate

$$\dot{m} = \eta_{BH} \dot{M} c^2 / L_{Edd}$$

Radiant luminosity at the level
$$L_{rad} = mL_{Edd}(m/m_*)$$
, $\dot{m}_* \approx 0.1$

is fraction of accretion power that is advected into black hole or convectively escapes

$$L_{th} = L_{rad} = 10^{36} ergs s^{-1} \Rightarrow$$

$$\dot{m}_{GCBH} \approx 1.5 \times 10^{-5}$$

But more likely are accretion rates $\leq 10^{-6}$ (non-thermal radio)

Plerion powered by wind from GC Black-Hole

The Black Hole Plerion

Particle escape by convective outflow in advection-dominated inflow-outflow source (ADIOS) extension (Blandford & Begelman 1999) of ADAF model.

Assume a wind power

$$L_{wind} = 10^{37} L_{37} \, ergs \, s^{-1}$$

With speed $v_{wind} \approx c/2$ directed into solid angle $\Omega \approx 1 \text{ sr}$

Wind terminates at a subrelativistic shock at

found by equating thermal gas pressure with energy density of the wind

Electrons and protons accelerated at the shock (first-order Fermi acceleration).

Electrons emit X-ray synchrotron radiation to form quiescent X-ray emission and Compton scatter

- ADAF emission
- 10¹³ Hz emission from cold dust ring around Sgr A*

Parameters of the plerion:

Post-shock region at R≤ 10¹⁷ cm

Magnetic field:

B~0.1 mG – from the TeV/X-ray flux ratio could increase at larger distances downstream (compression)

_ <u>Mean plasma speed:</u>

 $v \sim 500-1000$ km/s – from the requirement that $R_{\chi} \sim 10^{17}$ cm

(X-ray emitting electrons should have time to cool)

_ Total power of the outflow:

L ~ 10^{37} erg/s - to explain the TeV flux, can be up to 10^{38} erg/s

Quiescent X-ray, TeV, + radio/sub-mm

Other pieces of the puzzle: radio flux

Acceleration of electrons in the ADAF

Second-order Fermi accelerated electrons plasma turbulence (Liu, Petrosian, Melia, 2004):

$$\frac{B^2}{8\pi} = \varepsilon_B \left(\frac{\eta_{BH} \dot{M} c^2}{4\pi R^2 c} \right) \Rightarrow B(G) \approx 30 \varepsilon_B^{1/2} L_{36}$$

for a region of size 20 r_{Sh}

Equating acceleration rate of electrons by Whistler turbulence to synchrotron loss rate:

$$\gamma_0 \approx 200(\varsigma_{-1}\varepsilon_{B,-1})^{1/3} L_{36}^{1/2} \left(\frac{\tau_T}{2 \times 10^{-4}}\right)^{-11/18}$$

(Dermer, Miller & Li 1996; Liu, et al 2004)

Steady-state electron spectrum:

$$N(\gamma) \propto \gamma^2 \exp(-\gamma/\gamma_0)$$

Production of radio flux by relativistic electrons with Maxwellian ('monoenergetic') distribution:

$$S_v \propto v^{0.3} \exp(-v/v_0)$$

Flaring X-ray & NIR emissions from ADAF/BH region

- Flares from instabilities in accretion flow that form shocks at few R_{Sh} Fermi (*shock*) acceleration injects electrons with $\gamma \sim 10^6$, -2.2 injection index
- Explains X-ray/NIR flares and short variability timescales (cooling and expansion at R \sim 20-30 R_{sh} for NIR) $t_{cool}\sim 1.4 \times 10^3$ (B/10 G) $^{-2}$ (10⁶ / γ) s

Self-absorbed flares at < 100 GHz from same electrons in "expanding source" scenario (electrons in the outflow/wind) on larger distance/time scales

Galactic Center Black Hole Emission:

Sgr A* ADAF + Black-Hole Plerion + Sgr A West, a BH 'remnant'

<u>Predict</u>: <u>GLAST detection</u> of quasi-stationary Compton and bremsstrahlung fluxes from pc-scale plerion; <u>no TeV flares</u> (!)

Propagation of GeV electrons powers Sgr A West; *EGRET flux* -- from a young pulsar

Summary

- 1. Observations imply two emission regions:
 - (i) Inner ADAF region near black hole
 - (ii) Black hole plerion at the termination shock of wind/convective outflow of ADAF
- 2. X-ray flares are synchrotron emission within $\sim 10 r_s$ of GCBH
- 3. TeV γ rays made by black-hole powered plerion, first of a new class of nonthermal emitters
- 4. Quasi-stationary TeV emission (southern hemisphere "Crab"): TeV calibration source;
 - Energy-dependent source size;
- Downstream at larger scales gammarays of GeV energies are produced that will be observed by GLAST
- 6. Synchrotron radio flux from cooled electrons will produce polarized emission that would show up at higher radio/FIR frequencies

6 cm VLA radio of Sgr A East and Sgr A West (Yusef-Zadeh, Melia, & Wandle 2000)